The Adaptive Mean-Linkage Algorithm: A Bottom-Up Hierarchical Cluster Technique

نویسنده

  • Hélio Magalhães de Oliveira
چکیده

 In this paper a variant of the classical hierarchical cluster analysis is reported. This agglomerative (bottom-up) cluster technique is referred to as the Adaptive Mean-Linkage Algorithm. It can be interpreted as a linkage algorithm where the value of the threshold is conveniently up-dated at each interaction. The superiority of the adaptive clustering with respect to the average-linkage algorithm follows because it achieves a good compromise on threshold values: Thresholds based on the cut-off distance are sufficiently small to assure the homogeneity and also large enough to guarantee at least a pair of merging sets. This approach is applied to a set of possible substituents in a chemical series. Keywords pattern recognition/ cluster analysis/ adaptive mean-linkage algorithm/ data analysis

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Agglomerative Hierarchical Clustering using AVL tree in the case of single-linkage clustering method

The hierarchy is often used to infer knowledge from groups of items and relations in varying granularities. Hierarchical clustering algorithms take an input of pairwise data-item similarities and output a hierarchy of the data-items. This paper presents Bidirectional agglomerative hierarchical clustering to create a hierarchy bottom-up, by iteratively merging the closest pair of data-items into...

متن کامل

Sensorless Speed Control of Switched Reluctance Motor Drive Using the Binary Observer with Online Flux-Linkage Estimation

An adaptive online flux-linkage estimation method for the sensorless control of switched reluctance motor (SRM) drive is presented in this paper. Sensorless operation is achieved through a binary observer based algorithm. In order to avoid using the look up tables of motor characteristics, which makes the system, depends on motor parameters, an adaptive identification algorithm is used to estim...

متن کامل

Learning the Neighborhood with the Linkage Tree Genetic Algorithm

We discuss the use of online learning of the local search neighborhood. Specifically, we consider the Linkage Tree Genetic Algorithm (LTGA), a population-based, stochastic local search algorithm that learns the neighborhood by identifying the problem variables that have a high mutual information in a population of good solutions. The LTGA builds each generation a linkage tree using a hierarchic...

متن کامل

Hybrid hierarchical clustering with applications to microarray data.

In this paper, we propose a hybrid clustering method that combines the strengths of bottom-up hierarchical clustering with that of top-down clustering. The first method is good at identifying small clusters but not large ones; the strengths are reversed for the second method. The hybrid method is built on the new idea of a mutual cluster: a group of points closer to each other than to any other...

متن کامل

روش نوین خوشه‌بندی ترکیبی با استفاده از سیستم ایمنی مصنوعی و سلسله مراتبی

Artificial immune system (AIS) is one of the most meta-heuristic algorithms to solve complex problems. With a large number of data, creating a rapid decision and stable results are the most challenging tasks due to the rapid variation in real world. Clustering technique is a possible solution for overcoming these problems. The goal of clustering analysis is to group similar objects. AIS algor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1502.02512  شماره 

صفحات  -

تاریخ انتشار 2015